Obesity leads to the release of cytokines into the bloodstream, which impact the metabolism of breast cancer cells, making them more aggressive as a result, according to new research by scientists from Helmholtz Zentrum München, Technische Universität München (TUM), and Heidelberg University Hospital. The findings were published in a report in Cell Metabolis, and announced in an October 20 press release.

The number of people with obesity is increasing rapidly worldwide. The number of children and adolescents with obesity increased tenfold between 1975 and 2016, according to the World Health Organization. Severe overweight can lead to various health impairments. Besides inducing cardiovascular diseases, obesity also promotes the development of cancer and metastases.

The current study elucidates an as yet unknown mechanism making breast cancer more aggressive. The enzyme acetyl-CoA-carboxylase 1 (ACC1) plays a central role in this process, says Mauricio Berriel Diaz, MD, deputy director of the Institute for Diabetes and Cancer (IDC) at Helmholtz Zentrum München. ACC1 is a central component of fatty acid synthesis. It mediates the chemical addition of carbon dioxide to acetyl-CoA, which results in malonyl-CoA. This reaction is the first and speed determining step in the fatty acid synthesis of all living organisms.

Diaz led the study together with Stephan Herzig, director of the IDC and professor for Molecular Metabolic Control at TUM and Heidelberg University Hospital. “ACC1 is a key component of fatty acid synthesis,” said Berriel Diaz. “However, its function is impaired by the cytokines leptin and TGF-β.”

The levels of these cytokines are increased particularly in the blood of severely overweight subjects, researchers day.

The scientists demonstrated that the described inhibition of ACC1 leads to the accumulation of the fatty acid precursor acetyl-CoA. This precursor is transferred to certain gene “switches” that in turn increase the metastatic capacity of cancer cells by activating a specific gene program.

“Using human tissue from breast cancer metastases, we were able to show that ACC1 was significantly less active there,” said Marcos Rios Garcia, first author of the study.

When the scientists blocked the as yet unknown signaling pathway with an antibody. directed against the leptin receptor, this led to a significantly reduced metastatic spread of breast cancer tumors in an experimental model.

In the future, the researchers want to substantiate the data on the newly discovered mechanism in further studies. In addition, they are also considering related intervention points that could possibly be exploited therapeutically.

“Blocking the signaling pathways and switching off the metastasis-related genes could be a therapeutic target,” Herzig said. “As part of the so-called neoadjuvant therapy, the risk of metastases or the recurrence of tumors could be reduced prior to the surgical removal of the tumor.”